Abstract

We study a quantum (non-commutative) representation of the affine Weyl group mainly of type $E_8^{(1)}$, where the representation is given by birational actions on two variables $x$, $y$ with $q$-commutation relations. Using the tau variables, we also construct quantum "fundamental" polynomials $F(x,y)$ which completely control the Weyl group actions. The geometric properties of the polynomials $F(x,y)$ for the commutative case is lifted distinctively in the quantum case to certain singularity structures as the $q$-difference operators. This property is further utilized as the characterization of the quantum polynomials $F(x,y)$. As an application, the quantum curve associated with topological strings proposed recently by the first named author is rederived by the Weyl group symmetry. The cases of type $D_5^{(1)}$, $E_6^{(1)}$, $E_7^{(1)}$ are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call