Abstract

We investigate the statistics of the first detected passage time of a quantum walk. The postulates of quantum theory, in particular the collapse of the wave function upon measurement, reveal an intimate connection between the wave function of a process free of measurements, i.e. the solution of the Schrödinger equation, and the statistics of first detection events on a site. For stroboscopic measurements a quantum renewal equation yields basic properties of quantum walks. For example, for a tight binding model on a ring we discover critical sampling times, diverging quantities such as the mean time for first detection, and an optimal detection rate. For a quantum walk on an infinite line the probability of first detection decays like with a superimposed oscillation, critical behavior for a specific choice of sampling time, and vanishing amplitude when the sampling time approaches zero due to the quantum Zeno effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.