Abstract

A recommendation system uses the past purchases or ratings of n products by a group of m users, in order to provide personalized recommendations to individual users. The information is modeled as an m \times n preference matrix which is assumed to have a good rank-k approximation, for a small constant k. In this work, we present a quantum algorithm for recommendation systems that has running time O(\text{poly}(k)\text{polylog}(mn)). All known classical algorithms for recommendation systems that work through reconstructing an approximation of the preference matrix run in time polynomial in the matrix dimension. Our algorithm provides good recommendations by sampling efficiently from an approximation of the preference matrix, without reconstructing the entire matrix. For this, we design an efficient quantum procedure to project a given vector onto the row space of a given matrix. This is the first algorithm for recommendation systems that runs in time polylogarithmic in the dimensions of the matrix and provides an example of a quantum machine learning algorithm for a real world application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.