Abstract

In many a traditional physics textbook, a quantum measurement is defined as a projective measurement represented by a Hermitian operator. In quantum information theory, however, the concept of a measurement is dealt with in complete generality and we are therefore forced to confront the more general notion of positive-operator valued measures (POVMs), which suffice to describe all measurements that can be implemented in quantum experiments. We study the (in)compatibility of such POVMs and show that quantum theory realizes all possible (in)compatibility relations among sets of POVMs. This is in contrast to the restricted case of projective measurements for which commutativity is essentially equivalent to compatibility. Our result therefore points out a fundamental feature with respect to the (in)compatibility of quantum observables that has no analog in the case of projective measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.