Abstract
We investigate the ultracold reaction dynamics of magnetically trapped NH(X (3)Σ(-)) radicals using rigorous quantum scattering calculations involving three coupled potential energy surfaces. We find that the reactive NH+NH cross section is driven by a short-ranged collisional mechanism, and its magnitude is only weakly dependent on magnetic field strength. Unlike most ultracold reactions observed so far, the NH+NH scattering dynamics is nonuniversal. Our results indicate that chemical reactions can cause more trap loss than spin-inelastic NH+NH collisions, making molecular evaporative cooling more difficult than previously anticipated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.