Abstract

Quantum radiated power emitted by an Unruh-DeWitt (UD) detector in linear oscillatory motion in (3+1)D Minkowski space, with the internal harmonic oscillator minimally coupled to a massless scalar field, is obtained non-perturbatively by numerical method. The signal of the Unruh-like effect experienced by the detector is found to be pronounced in quantum radiation in the highly non-equilibrium regime with high averaged acceleration and short oscillatory cycle, and the signal would be greatly suppressed by quantum interference when the averaged proper acceleration is sufficiently low. An observer at a fixed angle would see periods of negative radiated power in each cycle of motion, while the averaged radiated power over a cycle is always positive as guaranteed by the quantum inequalities. Coherent high harmonic generation and down conversion are identified in the detector’s quantum radiation. Due to the overwhelming largeness of the vacuum correlators of the free field, the asymptotic reduced state of the harmonics of the radiation field is approximately a direct product of the squeezed thermal states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.