Abstract

This paper considers the query complexity of the functions in the family F_{N,M} of N-variable Boolean functions with onset size M, i.e., the number of inputs for which the function value is 1, where 1<= M <= 2^{N}/2 is assumed without loss of generality because of the symmetry of function values, 0 and 1. Our main results are as follows: (1) There is a super-linear gap between the average-case and worst-case quantum query complexities over F_{N,M} for a certain range of M. (2) There is no super-linear gap between the average-case and worst-case randomized query complexities over F_{N,M} for every M. (3) For every M bounded by a polynomial in N, any function in F_{N,M} has quantum query complexity Theta (sqrt{N}). (4) For every M=O(2^{cN}) with an arbitrary large constant c<1, any function in F_{N,M} has randomized query complexity Omega (N).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.