Abstract

We reformulate quantum query complexity in terms of inequalities and equations for a set of positive semidefinite matrices. Using the new formulation we: 1) show that the workspace of a quantum computer can be limited to at most n+k qubits (where n and k are the number of input and output bits respectively) without reducing the computational power of the model; 2) give an algorithm that on input the truth table of a partial Boolean function and an integer t runs in time polynomial in the size of the truth table and estimates, to any desired accuracy, the minimum probability of error that can be attained by a quantum query algorithm attempts to evaluate f in t queries; 3) use semidefinite programming duality to formulate a dual SDP P/spl circ/(f, t, /spl epsi/) that is feasible if and only if f cannot be evaluated within error /spl epsi/ by a t-step quantum query algorithm. Using this SDP, we derive a general lower bound for quantum query complexity that encompasses a lower bound method of Ambainis and its generalizations; 4) give an interpretation of a generalized form of branching in quantum computation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call