Abstract

K. Iwama and R. Freivalds considered query algorithms where the black box contains a permutation. Since then several authors have compared quantum and deterministic query algorithms for permutations. It turns out that the case of \(n\)-permutations where \(n\) is an odd number is difficult. There was no example of a permutation problem where quantization can save half of the queries for \((2m+1)\)-permutations if \(m\ge 2\). Even for \((2m)\)-permutations with \(m\ge 2\), the best proved advantage of quantum query algorithms is the result by Iwama/Freivalds where the quantum query complexity is \(m\) but the deterministic query complexity is \((2m-1)\). We present a group of \(5\)-permutations such that the deterministic query complexity is 4 and the quantum query complexity is 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.