Abstract
In this work, the operator-sum representation of a quantum process is extended to the probability representation of quantum mechanics. It is shown that each process admitting the operator-sum representation is assigned a kernel, convolving of which with the initial tomogram set characterizing the system state gives the tomographic state of the transformed system. This kernel, in turn, is broken into the kernels of partial operations, each of them incorporating the symbol of the evolution operator related to the joint evolution of the system and an ancillary environment. Such a kernel decomposition for the projection to a certain basis state and a Gaussian-type projection is demonstrated as well as qubit flipping and amplitude damping processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.