Abstract

The problem of defining quantum probabilities of composite events is considered. This problem is of great importance for the theory of quantum measurements and for quantum decision theory, which is a part of measurement theory. We show that the Lüders probability of consecutive measurements is a transition probability between two quantum states and that this probability cannot be treated as a quantum extension of the classical conditional probability. The Wigner distribution is shown to be a weighted transition probability that cannot be accepted as a quantum extension of the classical joint probability. We suggest the definition of quantum joint probabilities by introducing composite events in multichannel measurements. The notion of measurements under uncertainty is defined. We demonstrate that the necessary condition for mode interference is the entanglement of the composite prospect together with the entanglement of the composite statistical state. As an illustration, we consider an example of a quantum game. Special attention is paid to the application of the approach to systems with multimode states, such as atoms, molecules, quantum dots, or trapped Bose-condensed atoms with several coherent modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.