Abstract

We develop a new formalism for constructing probabilities associated with the causal ordering of events in quantum theory, where an event is defined as the emergence of a measurement record on a detector. We start with constructing probabilities for the causal ordering events in classical physics, where events are defined in terms of worldline coincidences. Then, we show how these notions generalize to quantum systems, where there exists no fundamental notion of trajectory. The probabilities constructed here are experimentally accessible, at least in principle. Our analysis here clarifies that the existence of quantum orderings of events do not require quantum gravity effects: it is a consequence of the quantum dynamics of matter, and it appears in the presence of a fixed background spacetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.