Abstract

A quantum prism, a new structure, consisting of many quantum wires with a diameter that gradually decreases from the base to the top, is the focus of our research. This distribution of quantum wires leads to a dispersive emitted spectrum. The red edge of the spectrum is determined by the band gap width of the bulk semiconductor, and the blue edge is determined by the quantum size of the excitons at the top of the prism. The PL spectrum of the silicon prismatic sample was excited by weak and strong light absorption. At weak absorption (hνex = 1.2 eV), the PL spectrum is located in the visible part of the spectrum, from 1.4 eV to 1.9 eV, with an energy higher than the band gap of the Si crystal. Such a "blue shift" of PL spectra by 0.7 eV is characteristic of the quantum confinement effect. It is a rainbow spectrum with an optical upconversion. The quantum prism is a new type of nano light source, as it replaces two elements in a conventional spectrometer: a light source and a dispersive element. These features enable to create a nano-spectrometer for measuring the absorption spectrum of individual molecules or viruses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.