Abstract
We construct a category of quantum polynomial functors which deforms Friedlander and Suslin's category of strict polynomial functors. The main aim of this paper is to develop from first principles the basic structural properties of this category (duality, projective generators, braiding etc.) in analogy with classical strict polynomial functors. We then apply the work of Hashimoto and Hayashi in this context to construct quantum Schur/Weyl functors, and use this to provide new and easy derivations of quantum (GLm,GLn) duality, along with other results in quantum invariant theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.