Abstract

We show how spin–spin correlations, detected in a non-destructive way via spatially resolved quantum polarization spectroscopy, strongly characterize various phases realized in trapped ultracold fermionic atoms. Polarization degrees of freedom of the light couple to spatially resolved components of the atomic spin. In this way, quantum fluctuations of matter are faithfully mapped onto those of light. In particular, we demonstrate that quantum spin polarization spectroscopy provides a direct method to detect the Fulde–Ferrell–Larkin–Ovchinnikov phase realized in a one-dimensional imbalanced Fermi system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.