Abstract

A new theoretical approach is developed that describes quantum optical properties of metal nanoparticles interacting with an electromagnetic field. In the linear regime of interaction, the model treats a metal nanoparticle as a two-level quantum system comprised of the lowest plasmonic Fock states governed by the optical Bloch equations. This approach not only agrees with the classical results, but provides also a direct link to quantum optics and cavity quantum electrodynamics that allows one to predict quantum phenomena not anticipated from a classical description. The new model is applied to the calculations of the radiative relaxation rate in a nanoparticle, the quantum beats in the intensity of radiation from a nanoparticle dimer, and the radiative relaxation rate in both 1D and 2D nanoparticle arrays in close vicinity to a reflective surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call