Abstract
We propose a quantum plasmonic sensor using Hong–Ou–Mandel (HOM) interferometry that measures the refractive index of an analyte, embedded in a plasmonic beam splitter composed of a dual-Kretschmann configuration, which serves as a frustrated total internal reflection beamsplitter (BS). The sensing performance of the HOM interferometry, combined with single-photon detectors, is evaluated through Fisher information for estimation of the refractive index of the analyte. This is subsequently compared with the classical benchmark that considers the injection of a coherent state of light into the plasmonic BS. By varying the wavelength of the single photons and the refractive index of the analyte, we identify a wide range where a 50% quantum enhancement is achieved and discuss the observed behaviors in comparison with the classical benchmark. We expect this study to provide a useful insight into the advancement of quantum-enhanced sensing technologies, with direct implications for a wide range of nanophotonic BS structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.