Abstract

We consider the dynamics of a quantum phase-slip junction (QPSJ) -- a dual Josephson junction -- connected to a microwave source with frequency $\omega_\textrm{mw}$. With respect to an ordinary Josephson junction, a QPSJ can sustain dual Shapiro steps, consisting of well-defined current plateaus at multiple integers of $ e \omega_\textrm{mw} / \pi$ in the current-voltage (I-V) characteristic. The experimental observation of these plateaus has been elusive up to now. We argue that thermal as well as quantum fluctuations can smear the I-V characteristic considerably. In order to understand these effects, we study a current-biased QPSJ under microwave irradiation and connected to an inductive and resistive environment. We find that the effect of these fluctuations are governed by the resistance of the environment and by the ratio of the phase-slip energy and the inductive energy. Our results are of interest for experiments aimed at the observation of dual Shapiro steps in QPSJ devices for the definition of a new quantum current standard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.