Abstract

We investigate a system of two- and three-body constrained dipolar bosons in a pair of one-dimensional optical lattices coupled to each other by the non-local dipole-dipole interactions. Assuming attractive dipole-dipole interactions, we obtain the ground state phase diagram of the system by employing the cluster mean-field theory. The competition between the repulsive on-site and attractive nearest-neighbor interactions between the chains yields three kinds of superfluids; namely the trimer superfluid, pair superfluid and the usual single particle superfluid along with the insulating Mott phase at the commensurate density. Besides, we also realize simultaneous existence of Mott insulator and superfluid phases for the two- and three-body constrained bosons, respectively. We also analyze the stability of these quantum phases in the presence of a harmonic trap potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call