Abstract

We use a combination of analytical and numerical techniques to study the phase diagram of the frustrated Heisenberg model on the bilayer honeycomb lattice. Using the Schwinger boson description of the spin operators followed by a mean field decoupling, the magnetic phase diagram is studied as a function of the frustration coupling $J_{2}$ and the interlayer coupling $J_{\bot}$. The presence of both magnetically ordered and disordered phases is investigated by means of the evaluation of ground-state energy, spin gap, local magnetization and spin-spin correlations. We observe a phase with a spin gap and short range N\'eel correlations that survives for non-zero next-nearest-neighbor interaction and interlayer coupling. Furthermore, we detect signatures of a reentrant behavior in the melting of N\'eel phase and symmetry restoring when the system undergoes a transition from an on-layer nematic valence bond crystal phase to an interlayer valence bond crystal phase. We complement our work with exact diagonalization on small clusters and dimer-series expansion calculations, together with a linear spin wave approach to study the phase diagram as a function of the spin $S$, the frustration and the interlayer couplings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.