Abstract

A class of frustrated one-dimensional periodic Heisenberg spin systems formed either by triangular unit cells with spin 1/2 or by composite unit cells formed by two different structural units, triangles and small linear segments formed by an odd number of spin-1/2 is investigated. Based on perturbative processing and numerical calculations of the density matrix renormalization group method, the gapless character of the exact energy spectrum of excitation for these systems was found. Their instability with respect to regular (Peierls) oscillations of interactions between structural units is demonstrated. The corresponding critical exponents for the energies of the ground state are estimated numerically. For some frustrated systems, a quantum phase transition associated with the spin symmetry of the ground state, caused by frustration, has been discovered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.