Abstract

A key problem in the field of quantum criticality is to understand the nature of quantum phase transitions in systems of interacting itinerant fermions, motivated by experiments on a variety of strongly correlated materials. Much attention has been paid in recent years to two-dimensional (2D) materials in which itinerant fermions acquire a pseudo-relativistic Dirac dispersion, such as graphene, topological insulator surfaces, and certain spin liquids. This article reviews the phenomenology and theoretical description of quantum phase transitions in systems of 2D Dirac fermions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call