Abstract

We investigate the quantum phase transitions for two weakly coupled atom-cavity sites. The interatomic dipole-dipole interaction is considered. Our numerical results show that the dipole-dipole interaction is a crucial parameter for the quantum phase transition. For small atom-cavity detuning, the becomes more and more obvious with the increase of the dipole-dipole interaction. In addition, the strong dipole-dipole interaction can lead the atomic excitation to be suppressed completely, and only the photonic excitation exists for the ground states. When the atom-cavity detuning is comparable with the dipole-dipole interaction, the dipole-dipole interaction enlarges the positive detunings, which is in favor of exhibiting superfluid photonic states. While for the negative detuning, the dipole-dipole interaction will reduce it, and contribute to the formation of the polaritonic insulator states. The cases for extended models have also been briefly analyzed. We also discuss how to find these novel phenomena in future experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.