Abstract

We study the two-dimensional Rydberg atom array in an optical cavity with help of the meanfield theory and the large-scale quantum Monte Carlo simulations. The strong dipole-dipole interactions between Rydberg atoms can make the system exhibit the crystal structure, and the coupling between two-level atom and cavity photon mode can result in the formation of the polariton. The interplay between them provides a rich quantum phase diagram including the Mott, solid-1/2, superradiant and superradiant solid phases. As the two-order co-existed phase, the superradiant solid phase breaks both translational and U(1) symmetries. Based on both numerical and analytic results, we found the region of superradiant solid is much larger than one dimensional case, so that it can be more easily observed in the experiment. Finally, we discuss how the energy gap of the Rydberg atom can affect the type of the quantum phase transition and the number of triple points.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call