Abstract

We investigate a system of three tunnel-coupled semiconductor quantum dots in a triangular geometry, one of which is connected to a metallic lead, in the regime where each dot is essentially singly occupied. Both ferromagnetic and antiferromagnetic spin-$\frac{1}{2}$ Kondo regimes, separated by a quantum phase transition, are shown to arise on tuning the interdot tunnel couplings and should be accessible experimentally. Even in the ferromagnetically-coupled local moment phase, the Kondo effect emerges in the vicinity of the transition at finite temperatures. Physical arguments and numerical renormalization group techniques are used to obtain a detailed understanding of the problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.