Abstract

We study a quantum Bose-Fermi mixture near a broad Feshbach resonance at zero temperature. Within a quantum field theoretical model a two-step Gaussian approximation allows to capture the main features of the quantum phase diagram. We show that a repulsive boson-boson interaction is necessary for thermodynamic stability. The quantum phase diagram is mapped in chemical potential and density space, and both first and second order quantum phase transitions are found. We discuss typical characteristics of the first order transition, such as hysteresis or a droplet formation of the condensate which may be searched for experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.