Abstract

In this paper, we employ a new kind of quasi-boson approach and the mean field theory to study analytically the Hamiltonian of an array of cavities with a three-level atom embedded in each cavity in the process of two-photon resonant transition under the influence of a bosonic bath. The superfluid order parameter of the system is obtained analytically and then analyzed numerically to investigate the effects of dissipation on the quantum phase transition from the superfluid to the Mott-insulator phase. It is shown that when the two-photon resonance is achieved one can have the superfluid phase at (ZJ/)= (ZJ/)c' 0.34 in the related ideal case. Furthermore, the system while in the two-photon resonant process has a larger dissipation rate as compared with that in the one-photon resonant process, thus leading to the suppression of the long-range coherence time and enhancement of the critical hopping rate for restoring coherence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.