Abstract

A Mobile Ad-Hoc Network(MANET) is a structure-less network where the mobile nodes randomly moved in any direction within the transmission range of the network. Due to this mobility, wide range of intrusion occurs in MANET. Therefore, Intrusion Detection Systems (IDS) are significant in MANETs to identify the malicious behavior. In order to improve the secured data communication an efficient Quantum Phase Shift Energy Conserved Data Security (QPSEC-DS) technique is introduced. The Quantum Phase Shift (QPS) technique is used for ensuring the security during the data transmission from sender to receiver in MANET. Initially, the quantum based approach is used to encrypt the information using QPS at the sender through secret key distribution. The receiver side also performs the same QPS, and then the encrypted bit is received successfully. This in turns attains the secured packet transmission without any malicious node in the MANET. Based on the phase shifting, the energy conservation between the sender and receiver is measured for transmitting the data packet using QPSEC-DS technique. Also, the enhanced Dynamic Source Routing (DSR) protocol is applied in QPSEC-DS technique is implemented to improve the energy management and secured data communication between the source and destination in an efficient manner. The QPSEC-DS technique conducts the simulations work on parameters including packet delivery ratio, energy consumption, communication overhead and end to end delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.