Abstract

In quantum parameter estimation, the quantum Cramér-Rao bound (QCRB) sets a fundamental limit on the precision achievable with unbiased estimators. It relates the uncertainty in estimating a parameter to the inverse of the quantum Fisher information (QFI). Both QCRB and QFI are valuable tools for analyzing interferometric phase sensitivity. This paper compares the single-parameter and two-parameter QFI for a Mach-Zehnder interferometer (MZI) with three detection schemes: single-mode and difference intensity detection, neither has access to an external phase reference and balanced homodyne detection with access to an external phase reference. We use a spin-coherent state associated with the su(2) algebra as the input state in all scenarios and show that all three schemes can achieve the QCRB for the spin-coherent input state. Furthermore, we explore the utilization of SU(2) coherent states in diverse scenarios. Significantly, we find that the highest achievable precision occurs when the total angular momentum quantum number, j, is high. We further demonstrate that under these optimal conditions, all detection schemes can achieve the QCRB by utilizing SU(2) coherent states as input states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.