Abstract

We study the influences of antidot-induced bound states on transport properties of two-dimensional quantum spin Hall insulators. The bound states are found able to induce quantum percolation in the originally insulating bulk. At some critical antidot densities, the quantum spin Hall phase can be completely destroyed due to the maximum quantum percolation. For systems with periodic boundaries, the maximum quantum percolation between the bound states creates intermediate extended states in the bulk which is originally gapped and insulating. The antidot-induced bound states plays the same role as the magnetic field in the quantum Hall effect, both makes electrons go into cyclotron motions. We also draw an analogy between the quantum percolation phenomena in this system and that in the network models of quantum Hall effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call