Abstract

Electron quantum path interferences in strongly laser-driven aligned molecules and their dependence on the molecular alignment is an essential open problem in strong-field molecular physics. Here, we demonstrate an approach which provides direct access to the observation of these interference processes. The approach is based on the combination of the time-gated-ion-microscopy technique with a pump-probe arrangement used to align the molecules and generate high-order harmonics. By spatially resolving the interference pattern produced by the spatiotemporal overlap of the harmonics emitted by the short and long electron quantum paths, we have succeeded in measuring in situ their phase difference and disclose their dependence on molecular alignment. The findings constitute a vital step towards an understanding of strong-field molecular physics and the development of attosecond spectroscopy approaches without the use of auxiliary atomic references.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.