Abstract
Ultrashort pulses of uv and soft x-ray radiation with durations ranging from femtoseconds to attoseconds can be produced as high-order harmonics of the fundamental frequency of a laser beam focused into gas. Applications to fields such as spectroscopy and attosecond metrology require the control and characterization of spectral and spatial properties of the emitted radiation. These are determined by both single atom and macroscopic response of the interaction medium to the laser field. Here we present evidence that microscopic effects have a larger influence than previously thought, and can induce a splitting and a frequency shift of the harmonic lines. These results not only offer a direct diagnostic for high-order harmonic generation, but also enable us to better tune the parameters of the produced radiation, while giving a deeper insight into the fundamental physics underlying this nonlinear optical process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.