Abstract

Spacetime geometry is supposed to be measured by identifying the trajectories of free test particles with geodesics. In practice, this cannot be done because, being described by Quantum Mechanics, particles do not follow trajectories. As a first step to study how it is possible to read spacetime geometry with quantum particles, we model these particles with classical extended objects. We propose to represent such extended objects by its covariant center of mass, which generically does not follow a geodesic of the background metric. We present a scheme that allows to extract some of components of an "effective" connection, namely, the connection that would be obtained if the locus of the center of mass is regarded as a geodesic. We discuss some issues that arise when trying to obtain all the components of the effective connection and its possible implications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.