Abstract

Weyl semimetals (WSMs) host charged Weyl fermions as emergent quasiparticles. We develop a unified analytical theory for the anomalous positive longitudinal magnetoconductivity (LMC) in a WSM, which bridges the gap between the classical and ultraquantum approaches. More interestingly, the LMC is found to exhibit periodic-in-1/B quantum oscillations, originating from the oscillations of the nonequilibrium chiral chemical potential. The quantum oscillations, superposed on the positive LMC, are a remarkable fingerprint of a WSM phase with a chiral anomaly, whose observation is a valid criteria for identifying a WSM material. In fact, such quantum oscillations were already observed by several experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call