Abstract

Seeking an effective quantum control entails searching over a landscape defined as the objective as a functional of the control field. This paper considers the problem of driving a state-to-state transition in a finite level quantum system, and analyzes the local topology of the landscape of the final transition probability in terms of the variables specifying the control field. Numerical calculation of the eigenvalues of the Hessian of the transition probability with respect to the control field variables reveals systematic structure in the spectra reflecting the existence of a generic and simple control landscape topology. An illustration shows that the number of nonzero Hessian eigenvalues is determined by the number of quantum states in the system. The Hessian eigenvectors associated with its nonzero eigenvalues are shown to give insight into the cooperative roles of the control variables. The practical consequences of these findings for quantum control are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call