Abstract

Quantum states of light, such as squeezed states or entangled states, can be used to make measurements (metrology), produce images, and sense objects with a precision that far exceeds what is possible classically, and also exceeds what was once thought to be possible quantum mechanically. The primary idea is to exploit quantum effects to beat the shot-noise limit in metrology and the Rayleigh diffraction limit in imaging and sensing. Quantum optical metrology has received a boost in recent years with an influx of ideas from the rapidly evolving field of optical quantum information processing. Both areas of research exploit the creation and manipulation of quantum-entangled states of light. We will review some of the recent theoretical and experimental advances in this exciting new field of quantum optical metrology, focusing on examples that exploit a particular two-mode entangled photon state – the High-N00N state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call