Abstract

Abstract Quantum interferometry based on induced-coherence phenomena has demonstrated the possibility of undetected-photon measurements. Perturbation in the optical path of probe photons can be detected by interference signals generated by quantum mechanically correlated twin photons propagating through a different path, possibly at a different wavelength. To the best of our knowledge, this work demonstrates for the first time a hybrid-type induced-coherence interferometer that incorporates a Mach–Zehnder-type interferometer for near-visible photons and a Michelson-type interferometer for infrared (IR) photons, based on double-pass-pumped spontaneous parametric down-conversion. This configuration enables IR optical measurements via the detection of near-visible photons and provides methods for optimizing the quality of measurements by identifying photon pairs of different origins. We theoretically identify that the induced-coherence interference visibility is approximately the same as the heralding efficiency between twin photons along the relevant spatial modes, and experimentally maximize the visibility by setting up a common reference spatial mode for IR photons. Applications to both time-domain and frequency-domain quantum optical induced-coherence tomography for three-dimensional test structures are demonstrated. The results prove the feasibility of practical undetected-photon sensing and imaging techniques based on the presented structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.