Abstract

We develop a quantum optical description of radiation from a two-level system (TLS) in strong laser fields, which provides a clear insight into the final states of the TLS and the harmonics field. It is shown that there are two emission channels: the Rayleigh-like channel and the Raman-like channel, which correspond to the TLS ending up in the ground state and excited state after the emission, respectively. The numerical result shows that the harmonics are mainly produced by the Rayleigh-like channel. In addition, according to the coherence of emission among the emitters, the radiation is divided into coherent parts that result from the semi-classical dipole oscillation and incoherent parts that result from the quantum fluctuations of the dipole moment. In the weak field limits, the Rayleigh-like channel corresponds to the coherent parts, and the Raman-like channel corresponds to the incoherent parts. However, in strong laser fields, both channels contribute to coherent and incoherent radiation, and how much they contribute depends on the final excitation. By manipulating the laser field, we can make the Rayleigh-like channel produce either coherent or incoherent radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.