Abstract

Recent advances in understanding quantum reality lead to the proposal of quantum ontology. Here, as such, there is no distinction between the classical and the non-classical world. This is based on the abstract framework of propositional calculus which gives rise to Hilbert space structure, in which case, the framework is devoid of any material content like the concept of elementary particles and their localizations. The fundamental constants such as the Planck constant (h), speed of light (c) and gravitational constant (G), which have definite numerical values, need to be interpreted in this abstract framework. This is known as contextualization in the arena of modern physics. Some attempts have been made by Mittlestaed and his collaborators (Mittlestaedt et al. 2011) in this direction. They tried to understand this type of contextualization based on the idea of POVM (positive-operator valued measure) and unsharp observables. The Planck constant has been shown to be the degree of unsharpness in the observability of complementary variables like position and momentum in the context of the Heisenberg uncertainty principle. To apply the concepts of quantum ontology and quantum probability in other branches of knowledge such as the cognitive domain, it is necessary to make a prescription for contextualization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.