Abstract
We propose a scheme for realizing a quantum nondemolition (QND) measurement of a small number of optical photons. Our scheme has two stages: First, we couple a propagating light pulse with fixed photon number to a trapped cold atomic gas within a cavity, such that the pulse is stored within a collective polariton mode. Second, a small-photon-number measurement is engineered by monitoring the cavity-transmission spectrum. Since the polariton mode profile is preserved during the process of detecting the spectrum, photon-number QND measurements could be achieved by retrieving the light pulse from the polariton mode. We also discuss a method which uses QND measurements to generate small-photon Fock states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.