Abstract

Bosonic Josephson junctions can be realized by confining ultracold gases of bosons in multiwell traps and studied theoretically with the $M$-site Bose-Hubbard model. We show that canonical equilibrium states of the $M$-site Bose-Hubbard model may be approximated by mixtures of coherent states, provided the number of atoms is large and the total energy is comparable to ${k}_{B}T$. Using this approximation, we study thermal fluctuations in bosonic Josephson junctions in the mean-field regime. Statistical estimates of the fluctuations of relative phase and number, obtained by averaging over many replicates of an experiment, can be used to estimate the temperature and the tunneling parameter or to test whether the experimental procedure is effectively sampling from a canonical thermal equilibrium ensemble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.