Abstract
A fully quantum mechanical theory of diode mixers which includes quantization of the external circuit is presented. We find that Tucker's theory for SIS mixer conversion efficiencies is correct, but that his expression for the measurement noise must be augmented by an amount corresponding to half a photon at every frequency to which the mixer responds. Noise in high quality SIS mixers is shown to be accurately described by the conceptually simpler photodiode mixer noise theory. The radiation coupling efficiency term, η, which appears in photodiode theory turns out to be the coupling efficiency between the signal source admittance and the admittance which the SIS presents to the LO. Our theory reduces to Caves' quantum linear amplifier formalism, and therefore predicts measurement noises bounded by the quantum lower limit of hv/k_{B} . Predictions of performance versus frequency for SIS's are made. We predict that NbN SIS's will behave as nearly ideal photodiodes for frequencies as high as 3000 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.