Abstract
We present the first measurement of two-mode squeezing between the twin beams produced by a doubly resonant optical parameter oscillator (OPO) in an above threshold operation based on parametric amplification by nondegenerate four wave mixing with rubidium (^{85}Rb). We demonstrate a maximum intensity difference squeezing of -2.7 dB (-3.5 dB corrected for losses) with a pump power of 285mW and an output power of 12mW for each beam, operating close to the D1 line of Rb atoms. The use of open cavities combined with the high gain media can provide a strong level of noise compression and the access to new operation regimes that could not be explored by crystal based OPOs. The spectral bandwidth of the squeezed light is broadened by the cavity dynamics, and the squeezing level is robust for strong pump powers. Stable operation was obtained up to 4 times above the threshold. Moreover, operation of the OPO close to the atomic resonances of alkali atoms allows a natural integration into quantum networks, including structures such as quantum memories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.