Abstract

The variational quantum eigensolver is a promising way to solve the Schrödinger equation on a noisy intermediate-scale quantum (NISQ) computer, while its success relies on a well-designed wave function ansatz. Inspired by the quantum neural network, we propose a new hardware heuristic ansatz where its expressibility can be improved by increasing either the depth or the width of the circuit. Such a character makes this ansatz adaptable to different hardware environments. More importantly, it provides a general framework to improve the efficiency of the quantum resource utilization. For example, on a superconducting quantum computer where circuit depth is usually the bottleneck and the qubits thus cannot be fully used, circuit depth can be significantly reduced by introducing ancilla qubits. Ancilla qubits also make the circuit less sensitive to noises in practical application. These results open a new avenue to develop practical applications of quantum computation in the NISQ era.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.