Abstract

The current work addresses quantum machine learning in the context of Quantum Artificial Neural Networks such that the networks’ processing is divided in two stages: the learning stage, where the network converges to a specific quantum circuit, and the backpropagation stage where the network effectively works as a self-programing quantum computing system that selects the quantum circuits to solve computing problems. The results are extended to general architectures including recurrent networks that interact with an environment, coupling with it in the neural links’ activation order, and self-organizing in a dynamical regime that intermixes patterns of dynamical stochasticity and persistent quasiperiodic dynamics, making emerge a form of noise resilient dynamical record.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call