Abstract

We propose modulation protocols designed to generate, store, and transfer compact localized states in a quantum network. Induced by parameter tuning or local reflection symmetries, such states vanish outside selected domains of the complete system and are therefore ideal for information storage. Their creation and transfer is here achieved either via amplitude phase flips or via optimal temporal control of intersite couplings. We apply the concept to a decorated, locally symmetric Lieb lattice where one sublattice is dimerized, and also demonstrate it for more complex setups. The approach allows for a flexible storage and transfer of states along independent paths in lattices supporting flat energetic bands. We further demonstrate a method to equip any network featuring static perfect state transfer of single-site excitations with compact localized states, thus increasing the storage ability of these networks. We show that these compact localized states can likewise be perfectly transferred through the corresponding network by suitable, time-dependent modifications. The generic network and protocols proposed can be utilized in various physical setups such as atomic or molecular spin lattices, photonic waveguide arrays, and acoustic setups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.