Abstract

We consider reduced-state synchronization of qubit networks with the aim of driving the qubits' reduced states to a common trajectory. The evolution of the quantum network's state is described by a master equation, where the network Hamiltonian is either a direct sum or a tensor product of identical qubit Hamiltonians, and the coupling terms are given by a set of permutation operators over the network. The permutations introduce naturally quantum directed interactions. Part I of the paper establishes synchronization conditions for fixed quantum interactions. In this part of the paper, we further investigate the missing symmetry in the reduced-state synchronization from a graphical point of view. The information-flow hierarchy in quantum permutation operators is characterized by different layers of information-induced graphs, based on which a clear bridge between quantum and classical consensus dynamics is built. We show that the quantum synchronization equation is by nature equivalent to a cut-balanced consensus process. Then a necessary and sufficient condition is obtained for reaching quantum reduced-state synchronization in light of recent work by Hendrickx and Tsitsiklis [19].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call