Abstract
When a macroscopic metallic wire is subject to tensile stress, it necks down smoothly as it elongates. We show that nanowires with radii comparable to the Fermi wavelength display remarkably different behavior. Using concepts from fluid dynamics, a partial differential equation for nanowire shape evolution is derived from a semiclassical energy functional that includes electron-shell effects. A rich dynamics involving movement and interaction of kinks connecting locally stable radii is found, and a new class of universal equilibrium shapes is predicted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.