Abstract

Due to its vital role in many quantum information and communication protocols, much theoretical and experi- mental work has been conducted in order to investigate the fundamental properties of entanglement. In this work we describe an experimental investigation into the behavior of continuous-variable entanglement and quantum mutual information upon propagation through slow- and fast-light media. A four-wave mixing process in warm atomic vapor is used to generate an entangled two-mode squeezed vacuum state of light. One of the two modes of the resulting state is then sent through a second four-wave mixing process that is tuned to exhibit either slow- or fast-light properties. The cross-correlation and quantum mutual information shared between the resulting modes is quanti ed, and di erences in their behavior after propagation through slow- and fast-light media are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call