Abstract

Quantum morphology operations are proposed based on the novel enhanced quantum representation model. Two kinds of quantum morphology operations are included: quantum binary and grayscale morphology operations. Dilation and erosion operations are fundamental to morphological operations. Consequently, we focus on quantum binary and flat grayscale dilation and erosion operations and their corresponding circuits. As the basis of designing of binary morphology operations, three basic quantum logic operations AND, OR, and NOT involving two binary images are presented. Thus, quantum binary dilation and erosion operations can be realized based on these logic operations supplemented by quantum measurement operations. As to the design of flat grayscale dilation and erosion operations, the searching for maxima or minima in a certain space is involved; here, we use Grover's search algorithm to get these maxima and minima. With respect that the grayscale is represented by quantum bit string, the quantum bit string comparator is used as an oracle in Grover's search algorithm. In these quantum morphology operations, quantum parallelism is well utilized. The time complexity analysis shows that quantum morphology operations' time complexity is much lower or equal to the classical morphology operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.